Bicharacteristics Based Numerical Modelling for Hyperbolic Systems in Several Variables

K. R. Arun

School of Mathematics,
Indian Institute of Science Education and Research Thiruvananthapuram

Mathematical Aspects of Some Important Equations of Physics
Orange County, Coorg
22-24 February 2018
First order non-linear equation, existence of characteristic curves and compatibility conditions

\[F(x, y, u, p, q) = 0, \quad p = u_x, \quad q = u_y \]

Charpit equation splits into characteristic equations or \textit{kinematic equations}

\[\frac{dx}{d\sigma} = F_p, \quad \frac{dy}{d\sigma} = F_q \]

and compatibility conditions or \textit{dynamical equations}

\[\frac{dp}{d\sigma} = -F_x - pf_u \]
\[\frac{dq}{d\sigma} = -F_y - qf_u \]
\[\frac{du}{d\sigma} = pf_p + qf_q \]
Simplest Hyperbolic Equation in Multi-D

The FO NLPDE is an example of a hyperbolic equation. But more:

- A first order linear PDE for $u : \mathbb{R}^{m+1} \to \mathbb{R}$ is

 $$a(x, t)u_t + \langle b(x, t), \nabla_x u \rangle = c(x, t)$$

 where $a : \mathbb{R}^{m+1} \to \mathbb{R}$, $b : \mathbb{R}^{m+1} \to \mathbb{R}^m$, $c : \mathbb{R}^{m+1} \to \mathbb{R}$.

- Characteristic PDE for the characteristic surface: $\varphi(x, t) = 0$ in (x, t)-space is

 $$a(x, t)\varphi_t + \langle b(x, t), \nabla_x \varphi \rangle = 0.$$

- Characteristic surface is generated by characteristic curves

 $$\frac{d\mathbf{x}}{d\sigma} = b(x, t), \quad \frac{dt}{d\sigma} = a(x, t).$$
Hyperbolic system in one space variable

- Compare with single FO linear PDE and write the system of linear FO equations:
 \[A(x, t)u_t + B(x, t)u_x + C(x, t) = 0 \]
 where \(A, B \in \mathbb{R}^{n \times n} \) and \(C \in \mathbb{R}^n \).

- The system is defined to be hyperbolic if
 (i) the matrix \(B \) has \(n \) real eigenvalues relative to the matrix \(A \), i.e.,
 the \(n \) roots of the equation in \(\lambda \)
 \[\det(A\varphi_t + B\varphi_x) = 0 \quad \text{or} \quad \det(B - \lambda A) = 0, \quad \lambda = -\frac{\varphi_t}{\varphi_x} \]
 are real and
 (ii) the dimension of the eigenspace of each eigenvalue is equal to its algebraic multiplicity.
Hyperbolic system in one space variable: example

- \(u_{1t} + cu_{2x} = 0, \quad u_{2t} + cu_{1x} = 0, \quad c = \text{constant} \), which leads to the wave equation \(u_{1tt} - c^2 u_{1xx} = 0 \).
- \(\implies \) vector form of equations
 \[
 \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 u_1 \\
 u_2 \\
 \end{bmatrix}_t
 +
 \begin{bmatrix}
 0 & c \\
 c & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 u_1 \\
 u_2 \\
 \end{bmatrix}_x
 = 0.
 \]

- The Characteristic equation is
 \[
 \det(B - \lambda A) \equiv \lambda^2 - c^2 = 0 \implies \lambda = -c, \quad c.
 \]
- Let \(\ell_1 \) be the left eigenvector of \(-c\) i.e.,

 \[
 \ell_1 \begin{bmatrix}
 -\lambda & c \\
 c & -\lambda \\
 \end{bmatrix} \equiv \ell_1 \begin{bmatrix}
 c & c \\
 c & c \\
 \end{bmatrix} = 0.
 \]
Hyperbolic system in one space variable: example ··· conti.

- $\ell_1 = [1, -1]$. Similarly $\ell_2 = [1, 1]$.
- Multiply the vector form of the equations by ℓ_1 and ℓ_2 and get the two independent compatibility conditions:
 \[
 (u_1 - u_2)_t - c(u_1 - u_2)_x = 0
 \]
 and
 \[
 (u_1 + u_2)_t + c(u_1 + u_2)_x = 0
 \]

- **Definition:** $(u_1 - u_2)$ and $(u_1 + u_2)$ are characteristic variables of the first and second characteristic family (also Reimann Invariants of the second and first characteristic family).
Hyperbolic system in one space variable ··· conti.

- Denote eigenvalues by c_1, c_2, \ldots, c_n and assume that
 \[c_1 \leq c_2 \leq c_3 \leq \ldots \leq c_n \]

- Denote the left and right eigenvectors corresponding to c_i by $\ell^{(i)}$ and $r^{(i)}$, respectively:
 \[\ell^{(i)}(B - c_iA) = 0 \quad \text{and} \quad (B - c_iA)r^{(i)} = 0, \quad i = 1, 2, \ldots, n. \]

- **Characteristic curves** in (x, t)-plane corresponding to the eigenvalue c_i are given by the equation
 \[\frac{dx}{dt} = c_i : \quad \text{or} \quad \varphi_t + c_i \varphi_x = 0. \]
Multiplying the FO system by $\ell^{(i)}$, we get the compatibility condition along a characteristic curve of the ith characteristic family

$$\ell^{(i)} A (\partial_t + c_i \partial_x) u + \ell^{(i)} c = 0$$

which means the dynamical equation

$$\ell^{(i)} A \frac{du}{dt} + \ell^{(i)} c = 0 \quad \text{along} \quad \frac{dx}{dt} = c_i.$$

Note that if c_i is a multiple eigenvalue of multiplicity p and there exists p linearly independent eigenvectors corresponding to this eigenvalue and we get p independent compatibility conditions corresponding to it.
A First Order Quasilinear System in multi-Dimensions

- We shall consider now a system of \(n \) first order quasilinear PDE in \(m + 1 \) dimensional \((x, t)\)-space:

\[
A u_t + B^{(\alpha)} u_{x\alpha} + C = 0, \tag{1}
\]

where a repeated Greek letter index represent sum over the range 1, 2, \ldots, \(m \) and \(u \in \mathbb{R}^n \) and \(A, B^{(\alpha)} \in \mathbb{R}^{n\times n} \) and \(C \) are functions of \(x, t \) and \(u \).

- In general the system is quasilinear, i.e., \(A, B^{(\alpha)} \) are functions of \(u \) also.

- For a first order quasilinear hyperbolic system, the kinematical and dynamical results get coupled due to genuine nonlinearity present in a mode of propagation.
The characteristic PDE of (21) is

\[Q(x, t; \nabla \varphi, \varphi_t) := \det(A \varphi_t + B^{(\alpha)} \varphi_{x\alpha}) = 0. \]

We may assume that the system (1) is hyperbolic, i.e., it has \(n \) real eigenvalues and its eigenspace is complete. However, we shall concentrate on just one eigenvalue \(c \) and assume:

- \(c \) simple eigenvalue satisfying

\[Q(x, t; \nabla \varphi, \varphi_t) = 0 \Rightarrow \det(n_{\alpha} B^{(\alpha)} - cA) = 0. \] (2)
Example

For the wave equation

\[u_{tt} - a_0^2 (u_{xx} + u_{yy}) = 0, \]

the characteristic PDE is

\[\phi_t - a_0 (\phi_x^2 + \phi_y^2)^{1/2} = 0. \]

An important solution is the characteristic conoid

\[t - t_0 \pm \frac{1}{a_0} \left((x - x_0)^2 + (y - y_0)^2 \right)^{1/2} = 0 \]

Figure: Characteristic conoid
A Hyperbolic System of First Order Quasilinear Equations

... continued

- For the characteristic surface $\Omega : \varphi(x, t) = \alpha$:

$$c = -\frac{\varphi_t}{|\nabla \varphi|}, \quad \mathbf{n} = \frac{\nabla \varphi}{|\nabla \varphi|},$$

(5)

$c = \text{velocity of the wavefront } \Omega_t,$

$n = \text{unit normal of } \Omega_t.$

- Let ℓ and r be the corresponding left and right eigenvectors

$$\ell(n_\alpha B^{(\alpha)} - cA) = 0, \quad (n_\alpha B^{(\alpha)} - cA)r = 0.$$

(6)
Theorem Part A: **Kinematics.** For the eigenvalue c the rays are given by

$$\frac{d x_\alpha}{dt} = (\ell B^{(\alpha)} r)/(lA r) = \chi_\alpha$$ \hspace{1cm} (7)

which is the lemma on bicharacteristic (C & H) and

$$\frac{d n_\alpha}{dt} = -\frac{1}{\ell A r} \ell \left\{ n_\beta \left(n_\gamma \frac{\partial B^{(\gamma)}}{\partial \eta_\beta^\alpha} - c \frac{\partial A}{\partial \eta_\beta^\alpha} \right) \right\} r$$ \hspace{1cm} (8)

where u is present in (6) and (7) also through ℓ and r

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \chi_\alpha \frac{\partial}{\partial x_\alpha}, \hspace{1cm} \frac{\partial}{\partial \eta_\beta^\alpha} = n_\beta \frac{\partial}{\partial x_\alpha} - n_\alpha \frac{\partial}{\partial x_\beta}$$ \hspace{1cm} (9)

is a tangential derivative in the wavefront Ω_t.

Bicharacteristic Theorem Part A, Prasad 1993, 2007
Theorem Part B: **Dynamics**. Further, the system (2) implies a compatibility condition on a characteristic surface Ω of hyperbolic system in the form

$$\ell A \frac{du}{dt} + \ell (B^{(\alpha)} - \chi_\alpha A) \frac{\partial u}{\partial x_\alpha} + \ell C = 0 \quad (10)$$

The operator

$$\tilde{\partial}_j = l_i (B^{(\alpha)}_{ij} - \chi_\alpha A_{ij}) \frac{\partial}{\partial x_\alpha} \quad (11)$$

is a tangential derivative not only on the characteristic surface Ω but also on the wavefront Ω_t.
Proof of Bicharacteristic Theorem

- Proof of (7) follows geometrically from lemma of bicharacteristics of (C & H) or algebraically from (5) Prasad, 2007. It is further proved that χ is indeed a ray rector.

- Proof of (8) follows from the Charpit’s equations of (5) and converting the equation for φ_{x_α} into the equation for n_α using (3) (see Prasad, 2007, Ind Jour Pure and Appl Math).

- For proof of (10), we premultiply (1) by ℓ and rearranging the terms (Prasad, Nonlinear Hyperbolic Waves in Multi-dimensions, Chapman and Hall/CRC, 121 (2001)).
Bicharacteristic formulation of the Euler equations

We consider the 3-D Euler equations of gas dynamics

\[\rho_t + \langle q, \nabla \rho \rangle + \rho \langle \nabla, q \rangle = 0, \]
\[q_t + \langle q, \nabla \rangle q + \frac{1}{\rho} \nabla p = 0, \]
\[p_t + \langle q, \nabla \rangle p + \rho a^2 \langle \nabla, q \rangle = 0, \]

where \(\rho \) is the mass density, \(q = (q_1, q_2, q_3) \) the fluid velocity, \(p \) the pressure, \(a \) is sound velocity in the medium given by

\[a^2 = \gamma p / \rho \]

and \(\gamma \) is the ratio of specific heats, assumed to be constant. It is a system of 5 first order quasilinear equations.
Euler equations contd.

Taking \(u = (\rho, q_1, q_2, q_3, p)^T \), we find \(A = I \) and the matrix

\[
B^{(\alpha)} = \begin{bmatrix}
q_\alpha & \rho \delta_1 \alpha & \rho \delta_2 \alpha & \rho \delta_3 \alpha & 0 \\
0 & q_\alpha & 0 & 0 & \rho^{-1} \delta_1 \alpha \\
0 & 0 & q_\alpha & 0 & \rho^{-1} \delta_2 \alpha \\
0 & 0 & 0 & q_\alpha & \rho^{-1} \delta_3 \alpha \\
0 & \rho a^2 \delta_1 \alpha & \rho a^2 \delta_2 \alpha & \rho a^2 \delta_3 \alpha & q_\alpha
\end{bmatrix}.
\]

(16)

The five eigenvalues are

\[
c_1 = \langle n, q \rangle - a, \quad c_2 = c_3 = c_4 = \langle n, q \rangle, \quad c_5 = \langle n, q \rangle + a.
\]

(17)

We can easily check that there are three linearly independent left (or right) eigenvectors corresponding to the triple eigenvalue \(\langle n, q \rangle \) so that the system (12 - 14) is hyperbolic.
Bicharacteristic formulation of the Euler equations

The left and right eigenvectors corresponding to the eigenvalue c_5 can be chosen to be

$$
\ell = (0, n_1, n_2, n_3, \frac{1}{\rho a}), \quad r = (\rho/a, n_1, n_2, n_3, \rho a).
$$

The characteristic partial differential equation corresponding to this eigenvalue is

$$
\tilde{Q} \equiv \phi_t + \langle q, \nabla \phi \rangle + a|\nabla \phi| = 0.
$$

The ray equations for x and n become

$$
\frac{dx}{dt} = q + na
$$

and

$$
\frac{dn}{dt} = -La - n_\beta Lq_\beta.
$$
Bicharacteristic formulation of the Euler equations

Multiplying the equations in (12)-(14) by components of \(\ell \) and adding the results, we derive the compatibility condition on the characteristic surface as

\[
\alpha \frac{d\rho}{dt} + \rho \langle n, \frac{dq}{dt} \rangle + \rho a \langle L, q \rangle = 0,
\]

where \(\frac{d}{dt} = \frac{\partial}{\partial t} + \langle q + an, \nabla \rangle \). This is the form of the compatibility condition for the Euler equations (12)-(14) for the characteristic velocity \(c_5 \).
Comment on the compatibility condition

- The derivatives in the compatibility condition (1.15) on a characteristics surface Ω are so grouped that each group represents a tangential derivative on Ω.
- The derivative $\frac{d}{dt} = \frac{\partial}{\partial t} + \chi_\alpha \frac{\partial}{\partial x_\alpha}$ along a ray is the time derivative along a bicharacteristics i.e., tangential to Ω.
- Each of the derivatives $\tilde{\partial}_j = \ell_i \left(B_{ij}^{(\alpha)} - \chi_\alpha A_{ij} \right) \frac{\partial}{\partial x_\alpha}$, $(j = 1, 2, \cdots, n)$ operating on u_j in the second term represents tangential derivatives not only on Ω but also on Ω_t.
Comment on the equations in bicharacteristics theorem

- We note that $|\mathbf{n}| = 1$ so that only $m - 1$ components of \mathbf{n} are independent and we can show that only $m - 1$ equations in (7) are independent.
- For a linear hyperbolic system, the ray equations (6) and (7) decouple from (9) and hence can be solved to give rays.
- For a quasilinear system (1), the matrices A and $B^{(\alpha)}$ depend on \mathbf{u} and hence the terms on the right sides of (6) and (7), when evaluated, would contain \mathbf{u} and $\frac{\partial \mathbf{u}}{\partial \eta^\alpha_\beta}$.
Comment on the equations in bicharacteristics theorem

- In this case the system (6), (7) and (9) of $2m$ equations in $2m + n - 1$ quantities x, n (only $n - 1$), u is an under-determined unless $n = 1$

- However, this system is useful in high frequency approximation, leading to the weakly nonlinear ray theory (WNLRT) or the shock ray theory.

- For a hyperbolic system, we get a complete system when we consider n compatibility conditions corresponding to n families of characteristics fields.
Comment on the equations in bicharacteristics theorem

- One important use is in development of numerical methods, namely characteristic Galerkin method (started by Morton (2000) and collaborators following Prasad and collaborators (1982)), a topic of active research today.

- We present an example, equivalent to the wave equation with variable speed in a heterogeneous medium in two space dimensions and derive all equations in the bicharacteristic theorem explicitly.

- In example, we shall see compatibility conditions of all characteristic families take part.
Mathematical Model Linear Heterogeneous Medium

- Considers Euler equations and small perturbations of steady state $\rho_0, u_0 = 0, v_0 = 0, p_0$, where ρ, u, v, p denote respectively the density, x, y-components of velocity and pressure.
- It turns out from continuity equation $\rho_0 = \rho_0(x, y)$ and from momentum equations that p_0 has to be a constant.
- The acoustic waves are then governed by a first order system (A., Kraft, Lukacova, Prasad, 2009).
Mathematical Model Linear Heterogeneous Medium — continued

\[H_t + (f_1(u))_x + (f_2(u))_y = 0, \quad (23) \]

where

\[
H = \begin{bmatrix}
p \\
\rho_0 u \\
\rho_0 v
\end{bmatrix}, \quad f_1(u) = \begin{bmatrix}
a_0^2 \rho_0 u \\
p \\
0
\end{bmatrix}, \quad f_2(u) = \begin{bmatrix}
a_0^2 \rho_0 v \\
0 \\
p
\end{bmatrix}
\]

and \(a_0 = \sqrt{\gamma p_0 / \rho_0} \) denotes the wave speed and

\[
u = \begin{bmatrix}
p \\
u \\
v
\end{bmatrix}.
\]

Note that \(\rho_0 = \rho_0(x, y), \ p_0 \equiv \text{const} \) and \(a_0 = a_0(x, y) \).
Governing Equations and Eigenvalues

In differential form this reads

\[v_t + A_1 v_x + A_2 v_y = 0, \]

(24)

where

\[u = \begin{bmatrix} p \\ u \\ v \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0 & \gamma p_0 & 0 \\ \frac{1}{\rho_0} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 & \gamma p_0 \\ 0 & 0 & 0 \\ \frac{1}{\rho_0} & 0 & 0 \end{bmatrix}. \]

Three eigenvalues of this system are

\[c_1 = -a_0, \quad c_2 = 0, \quad c_3 = a_0, \]

(25)

where \(a_0 > 0 \).
Eigenvectors

Take unit normal \((n_1, n_2) = (\cos \theta, \sin \theta)\), then left eigenvectors are

\[
\begin{align*}
\mathbf{l}_1 &= \frac{1}{2} \left(-\frac{1}{a_0 \rho_0}, \cos \theta, \sin \theta \right), \\
\mathbf{l}_2 &= (0, \sin \theta, -\cos \theta), \\
\mathbf{l}_3 &= \frac{1}{2} \left(\frac{1}{a_0 \rho_0}, \cos \theta, \sin \theta \right).
\end{align*}
\] (26)

Right eigenvectors are

\[
\begin{align*}
\mathbf{r}_1 &= \begin{bmatrix} -a_0 \rho_0 \\ \cos \theta \\ \sin \theta \end{bmatrix}, \\
\mathbf{r}_2 &= \begin{bmatrix} 0 \\ \sin \theta \\ \cos \theta \end{bmatrix}, \\
\mathbf{r}_3 &= \begin{bmatrix} a_0 \rho_0 \\ \cos \theta \\ \sin \theta \end{bmatrix}.
\end{align*}
\] (27)
Bicharacteristic Theorem for First Characteristic Field

Bicharacteristic equations are

\[
\frac{dx}{dt} = -a_0(x, y) \cos \theta, \quad \frac{dy}{dt} = -a_0(x, y) \sin \theta, \\
\frac{d\theta}{dt} = -a_{0x} \sin \theta + a_{0y} \cos \theta.
\]
\tag{28}

The transport equation or compatibility condition is

\[
\frac{dp}{dt} - z_0 \cos \theta \frac{du}{dt} - z_0 \sin \theta \frac{dv}{dt} + z_0 S = 0,
\]
\tag{29}

where \(z_0 = a_0 \rho_0 \) and

\[
S := a_0 \left\{ u_x \sin^2 \theta - (u_y + v_x) \sin \theta \cos \theta + v_y \cos^2 \theta \right\}
\equiv a_0 \left(-\sin \theta \frac{\partial u}{\partial \lambda} + \cos \theta \frac{\partial v}{\partial \lambda} \right), \quad \frac{\partial}{\partial \lambda} \text{ is defined below.}
\]
\tag{30}
Geometrical and Physical Interpretation

- The operator
 \[
 \frac{d}{dt} = \frac{\partial}{\partial t} - a_0 \cos \theta \frac{\partial}{\partial x} - a_0 \sin \theta \frac{\partial}{\partial y}
 \]
 \[\text{(31)}\]
 represents time rate of change along the backward bicharacteristics.

- The operator
 \[
 \frac{\partial}{\partial \lambda} = - \sin \theta \frac{\partial}{\partial x} + \cos \theta \frac{\partial}{\partial y}
 \]
 \[\text{(32)}\]
 represents a tangential derivative on wavefront Ω_t.
Geometrical and Physical Interpretation

- (16) shows that wavefront normal turns due to gradient of sound velocity a_0 along Ω_t. Rays are not straight lines.

- We can write S as

$$S = \tilde{\partial}_1 u + \tilde{\partial}_2 v$$

where $\tilde{\partial}_1 = -a_0 \sin \theta \frac{\partial}{\partial \lambda}$ and $\tilde{\partial}_2 = a_0 \cos \theta \frac{\partial}{\partial \lambda}$.

- (18) shows that evolution of a combination of u, v, and p along the bicharacteristic depends not only the value of the combination at a base point P_0 but also on the tangential derivatives of u and v along the wavefront at the base point.
Backward Moving Wavefronts and Rays of a Wave Equation, $a(x, y) = a_0 + a_1(x - x_P) + a_2(y - y_P)$. Wavefront converges to a point.
Derivation of Integral form of Evolution Equation

Let $\omega = \theta(t_{n+1}) \in [0, 2\pi]$ is a parameter such that $\omega = \text{const.}$ represents a particular bicharacteristic starting from the vertex $P = (x, y, t_{n+1} = t_n + \Delta t)$.

A solution representing a backward bicharacteristic starting from $P = (x, y, t_n + \Delta t)$ is represented as $x = x(t, \omega), \ y = y(t, \omega), \ \theta = \theta(t, \omega)$.

Let $Q_1 = Q_1(x(t_n), y(t_n), t_n), \ \tilde{Q}_1 = \tilde{Q}_1(x(\tau), y(\tau), \tau)$ be respectively the footpoints of a bicharacteristics on the planes $t = t_n$ and $t = \tau \in (t_n, t_{n+1})$.
We integrate the transport equation (17) along the respective bicharacteristic (17) and take an integral average over the wavefronts.

Integrating (17) in time from t_n to t_{n+1} and using the integration by parts for the second and third terms yield
Derivation of Integral form of Evolution Equation — continued

\[p(P) = p(Q_1) + \cos \omega(z_0 u)(P) - \cos \theta(z_0 u)(Q_1) \]

\[- \int_{t_n}^{t_{n+1}} (z_0 a_0 x u)(\tilde{Q}_1) d\tau \]

\[+ \sin \omega(z_0 v)(P) - \sin \theta(z_0 v)(Q_1) \]

\[- \int_{t_n}^{t_{n+1}} (z_0 a_0 y v)(\tilde{Q}_1) d\tau \]

\[- \int_{t_n}^{t_{n+1}} (z_0 S)(\tilde{Q}_1) d\tau. \] (34)
Integrate (22) over $\omega \in [0, 2\pi]$ and divide by 2π to obtain

$$p(P) = \frac{1}{2\pi} \int_{0}^{2\pi} (p - z_0 u \cos \theta - z_0 v \sin \theta)(Q_1)d\omega$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 (a_{0x} u + a_{0y} v))(\tilde{Q}_1)d\tau d\omega$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 S)(\tilde{Q}_1)d\tau d\omega. \quad (35)$$

This is the exact integral representation for p.
2nd Family of Bicharacteristics: $\lambda = 0$

Bicharacteristic equations are

$$\frac{dx}{dt} = 0, \quad \frac{dy}{dt} = 0, \quad \frac{d\theta}{dt} = 0. \quad (36)$$

The compatibility condition is

$$z_0 \sin \theta \frac{du}{dt} - z_0 \cos \theta \frac{dv}{dt} + a_0(p_x \sin \theta - p_y \cos \theta) = 0. \quad (37)$$

Note that characteristic conoid degenerates into a single bicharacteristic line with $\theta(\tau) = \omega$

$$x = x_{n+1}, \quad y = y_{n+1}, \quad t = \tau \in (t_n, t_{n+1}). \quad (38)$$
2nd Family of Bicharacteristics: $\lambda = 0$ — continued

The footpoints of the bicharacteristics on the planes $t = t_n$ and $t = \tau \in (t_n, t_{n+1})$ are $Q_2 = (x_{n+1}, y_{n+1}, t_n)$, $\tilde{Q}_2 = \tilde{Q}_1(x(\tau), y(\tau), \tau)$ be respectively.

Integrating now (25) in time from t_n to t_{n+1} gives

$$
\sin \omega (z_0 u)(P) - \sin \omega (z_0 u)(Q_2) - \int_{t_n}^{t_{n+1}} \left(\frac{d}{dt} (\sin \theta z_0) u \right) (\tilde{Q}_2) d\tau
$$

$$
- \cos \omega (z_0 v)(P) + \cos \omega (z_0 v)(Q_2) - \int_{t_n}^{t_{n+1}} \left(\frac{d}{dt} (\cos \theta z_0) v \right) (\tilde{Q}_2) d\tau
$$

$$
+ \int_{t_n}^{t_{n+1}} \left(a_0 \left(\sin \omega p_x - \cos \omega p_y \right) \right) (\tilde{Q}_2) d\tau = 0. \quad (39)
$$

Note that the first two integrals disappear because $\frac{dz_0(x,y)}{dt} = 0$ and due to the ray equations (24).
Multiplying (28) by \(\sin \omega \) and integrating over \(\omega \) gives

\[
\pi(z_0 u)(P) - \pi(z_0 u)(Q_2) + \pi a_0(Q_2) \int_{t_n}^{t_{n+1}} p_x(\tilde{Q}_2) d\tau = 0.
\] \hspace{1cm} (40)

This gives transport equation along single bicharacteristic curve (25) corresponding to convective wave gives \(u(x_{n+1}, y_{n+1}, t_{n+1}) \) purely in terms of values along this bicharacteristics is very weak information.
1st Family of Bicharacteristics: $\lambda = -a_0$ — continued

- We combine (28) with stronger information on the wavefront at t_n of first family of characteristic.

Multiply (22) by $\cos \omega$ and integrate over ω to get

$$\pi z_0(P)u(P) = \int_0^{2\pi} \left(-p + z_0 u \cos \theta + z_0 v \sin \theta \right) (Q_1) \cos \omega d\omega$$

$$+ \int_0^{2\pi} \int_{t_n}^{t_{n+1}} \left(z_0 \left(a_0x u + a_0y v \right) \right) (\tilde{Q}_1) \cos \omega d\tau d\omega$$

$$+ \int_0^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 S)(\tilde{Q}_1) \cos \omega d\tau d\omega.$$ (41)
Final Exact Integral Equation for u, v, p at P

- Adding (22) and (29) and rearranging yields the integral equation for $u(P)$, we shall write this exact equation later.
- Analogously the exact integral representation for $v(P)$ can be derived.
- We do not need to consider the third family of characteristic compatibility condition corresponding to $c_3 = a_0$. This takes information in future i.e., $t > t_{n+1}$.
- We shall write all three exact integral equations for u, v, p at P on the next slides:
Integral Equation for $p(P)$ is

$$p(P) = \frac{1}{2\pi} \int_{0}^{2\pi} (p - z_0 u \cos \theta - z_0 v \sin \theta) (Q_1) d\omega$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 (a_{0x} u + a_{0y} v)) (\tilde{Q}_1) d\tau d\omega$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 S)(\tilde{Q}_1) d\tau d\omega. \quad (42)$$
Integral Equation for $u(P)$

Integral Equation for $u(P)$ is

\[
\begin{align*}
 u(P) &= \frac{1}{2\pi z_0(P)} \int_0^{2\pi} \left(-p + z_0 u \cos \theta + z_0 v \sin \theta \right) (Q_1) \cos \omega d\omega \\
 + \frac{1}{2\pi z_0(P)} \int_0^{2\pi} \int_{t_n}^{t_{n+1}} z_0 \left(a_{0x} u + a_{0y} v \right) (\tilde{Q}_1) \cos \omega d\tau d\omega \\
 + \frac{1}{2} u(Q_2) - \frac{1}{2\rho_0(P)} \int_{t_n}^{t_{n+1}} p_x(\tilde{Q}_2) d\tau \\
 + \frac{1}{2\pi z_0(P)} \int_0^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 S)(\tilde{Q}_1) \cos \omega d\tau d\omega.
\end{align*}
\]
(43)
Integral Equation for $\nu(P)$

Integral Equation for $\nu(P)$ is

$$
\nu(P) = \frac{1}{2\pi z_0(P)} \int_0^{2\pi} (-p + z_0 u \cos \theta + z_0 \nu \sin \theta) (Q_1) \sin \omega d\omega
$$

$$
+ \frac{1}{2\pi z_0(P)} \int_0^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 (a_{0x} u + a_{0y} \nu)) (\tilde{Q}_1) \sin \omega d\tau d\omega
$$

$$
+ \frac{1}{2} \nu(Q_2) - \frac{1}{2\rho_0(P)} \int_{t_n}^{t_{n+1}} p_y(\tilde{Q}_2) d\tau
$$

$$
+ \frac{1}{2\pi z_0(P)} \int_0^{2\pi} \int_{t_n}^{t_{n+1}} (z_0 S)(\tilde{Q}_1) \sin \omega d\tau d\omega.
$$

(44)

We may treat all these three equations together as an extension of d’Alembert solution to multi-dimension, there solution is given directly. Here it is an integral equation.
Finite Volume Scheme

Divide a computational domain Ω into a finite number of regular finite volumes $\Omega_{ij} := [i\Delta x, (i + 1)\Delta x] \times [j\Delta y, (j + 1)\Delta y]$ for $i = 0, \ldots, M$, $j = 0, \ldots, N$

$$U_{ij}^0 = \frac{1}{|\Omega_{ij}|} \int_{\Omega_{ij}} U(\cdot, 0)d\Omega. \tag{45}$$

The update formula for the finite volume evolution Galerkin scheme is

$$U_{ij}^{n+1} = U_{ij}^n - \Delta t \frac{\Delta x}{\Delta t} \delta_{ij} \bar{f}_1^{n+1/2} - \Delta t \frac{\Delta y}{\Delta t} \delta_{ij} \bar{f}_2^{n+1/2}. \tag{46}$$

We evolve the cell interface fluxes $\bar{f}_k^{n+1/2}$ to $t_n + 1/2$ using the approximate evolution operator denoted by $E_{\Delta t/2}$ and average them along the cell interface \mathcal{E}

$$\bar{f}_k^{n+1/2} := \sum_j \omega_j f_k(E_{\Delta t/2} U^n(x_j^i(\mathcal{E}))), \quad k = 1, 2. \tag{47}$$

Here $x_j^i(\mathcal{E})$ are the nodes and ω_j the weights of the quadrature for the flux integration along the edges.
The building blocks of the FVEG scheme are

- **Step 1**: Polynomial reconstruction of the piecewise constant data using standard recovery procedures.
- **Step 2**: Discretise the flux integrals in the FV update using either Trapezoidal or Simpson rule.
- **Step 3**: Construct the local Mach cone at the quadrature nodes.
- **Step 4**: Evolve the data using the approximate evolution operator and compute fluxes at half time step.
- **Step 5**: Update the solution using the standard FV scheme.

Remark

The FVEG method is a genuine multi-dimensional generalisation of Godunov’s REA algorithm.
Smoothly varying wave speed

The computational domain is \([0, 1] \times [0, 1]\) and the initial conditions are

\[
p(x, y) = \sin(2\pi x) + \cos(2\pi y),
\]

\[
u(x, y) = 0,
\]

\[
v(x, y) = 0.
\]

The initial wave speed is

\[
a_0(x, y) = 1 + \frac{1}{4} (\sin(4\pi x) + \cos(4\pi y)).
\]

Periodic boundary conditions and final time is \(T = 1.0\).
Smoothly varying wave speed

Figure: Results with a smoothly varying wave speed
Radially symmetric wave speed

We model the wave propagation in a radially symmetric medium. The wave speed is

\[a_0(x, y) = \begin{cases}
0.175 & \text{if } r \leq 0.15, \\
0.350 & \text{if } 0.41 < r \leq 0.59, \\
0.275 & \text{if } 0.85 < r.
\end{cases} \]

The initial pressure is given by

\[p(x, y) = \begin{cases}
\bar{p}((r - 0.5)/0.18) & \text{if } |r - 0.5| < 0.18, \\
0 & \text{otherwise}.
\end{cases} \]

\(\bar{p} \) is a suitable polynomial.
Radially symmetric

Figure: The solution corresponding to radially symmetric wave speed a_0
Heterogeneous medium with discontinuous wave speed

Propagation of acoustic waves through a layered medium with a single interface. The piecewise constant wave speed is given as

\[a_0(x, y) = \begin{cases}
1.0 & \text{if } x < 0.5, \\
0.5 & \text{otherwise.}
\end{cases} \]

The initial data are

\[p(x, y) = \begin{cases}
1.0 + 0.5(\cos(\pi r/0.1) - 1.0) & \text{if } r < 0.1, \\
0.0 & \text{otherwise.}
\end{cases} \]

\[u(x, y) = v(x, y) = 0.0. \]
Heterogeneous medium

Figure: The pressure isolines for the reflection problem
Thank You for Your Kind Attention!

K. R. Arun
arun@iisertvm.ac.in