3-5 March 2011
Held at IIT Patna

The three day workshop Started at 9:00 AM on 3rd March with a short welcome note by Dr. A. K.
Upadhyay, followed by address by Prof. Phoolan Prasad. Prof. R. S. Ramakrishna, currently Professor in
Dept. of Computer Science and Engineering inaugurated the workshop.

On the first day lectures were delivered by Prof. Phoolan Prasad, by Prof. M. K. Kadalbajoo and by Prof.
V. Raghavendra. Subsequent days, i.e., the second lectures were delivered by Prof. Phoolan Prasad,
Prof. V. Raghavendra and Prof. D. Bahuguna whereas on the third day lectures were delivered by Prof.
Kadalbajoo and Prof. D. Bahuguna.

The lectures were made very interactive by speakers and were open to discussions during or after the
lectures. Apart from this the participants interacted well with speakers during the tea breaks.

The spectrum of participation was from almost all the major Universities and colleges from the cities
and places near the city of Patna. This includes, University of Patna, VKS University of Arrah, Nalanda
Open University, Central University of Bihar, National Institute of Technology Patna, BIT Mesra Patna
centre, NSIT Patna, MACET Patna and the affiliated colleges of the Universities, NIT Surat, IISER Bhopal
and IIT Patna. The list of participants have been forwarded to Prof. Phoolan Prasad, who was also the
convener of the workshop.

We displayed the copies of Resonance and huge number of participants took interest in taking
photocopies of the subscription forms.

The statement of expenditure is being prepared by the account section and will be forwarded to the
Academy soon.

Prepared by Dr. Ashish Upadhyay
Lecture Schedule for Science Academy's Workshop on PDE
3-5 March 2011
Indian Institute of Technology Patna
(The train from Kanpur reached late, Prof. Raghavendra was at Patna only on 3rd and 4th March)

<table>
<thead>
<tr>
<th>Time</th>
<th>Day & Date</th>
<th>9:00 to 10:30</th>
<th>11:00 to 12:30</th>
<th>2:00 to 3:30</th>
<th>4:00 to 5:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td>PP</td>
<td>VR</td>
<td>MKK</td>
</tr>
<tr>
<td>Thursday</td>
<td>Opening/PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 March</td>
<td></td>
<td></td>
<td>PP</td>
<td>VR</td>
<td>MKK</td>
</tr>
<tr>
<td>Friday</td>
<td>PP</td>
<td></td>
<td></td>
<td></td>
<td>VR</td>
</tr>
<tr>
<td>4 March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>MKK</td>
<td></td>
<td>DB</td>
<td>MKK</td>
<td>DB</td>
</tr>
<tr>
<td>5 March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DB: D. Bahuguna
M KK: M. K. Kadalbajoo
PP: Phoolan Prasad
VR: V. Raghavendra
To determine how to solve a complex problem involving the associated eigenvalues and homogeneous problem, the vector of variables, the equation is:

\[a_k = \lambda_k a_k \]

\[\lambda_k = \text{eigenvalue} \]

\[a_k = \text{vector of variables} \]

And get with: the associated eigenvalue and homogeneous problem by:

\[\frac{d^2}{dx^2} \phi(x) + \lambda \phi(x) = 0 \]